

Matière de coupe

Dans le domaine de l'usinage par enlèvement de copeau

Patrick Reusser

FSRM

Méthodes pour l'optimisation des paramètres de coupe

3 - 1

Propriétés matière de coupe

Les grandeurs essentielles qui définissent un matériau de coupe sont

- Résistance à la fissuration → Résistance aux efforts dynamiques
- Dureté → Résistance à l'abrasion
- Résistance à la flexion → Résistance aux efforts statiques
- Dureté à chaud → Essentiel pour usinage dur
- Affinité chimique

FSRM

Méthodes pour l'optimisation des paramètres de coupe

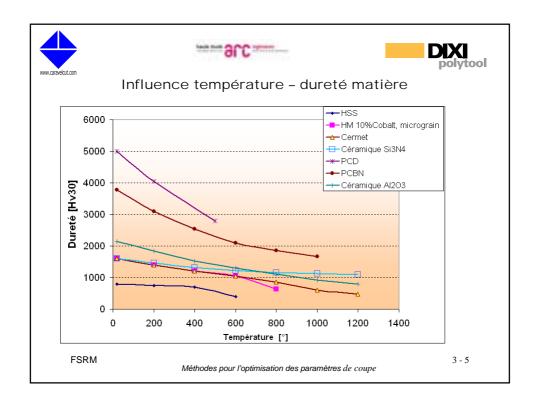
Propriétés matière de coupe

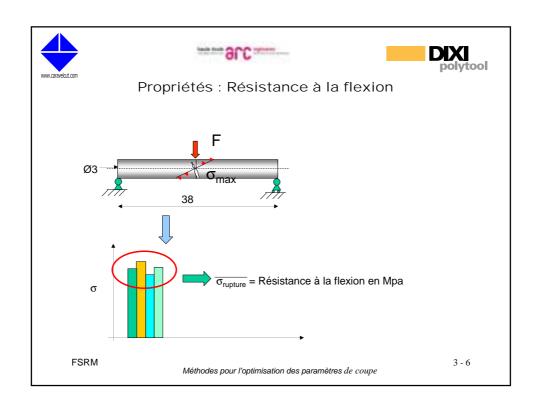
- Fraisage, coupe interrompue
 - Résistance à la flexion
 - Résistance à la fissuration (surtout pour l'ébauche)
 - Résistance au chocs thermique
- Tournage
 - Résistance à l'usure
 - Dureté à chaud
 - Pour matériau M, S, résistance à la fissuration (collage, fatigue,..)

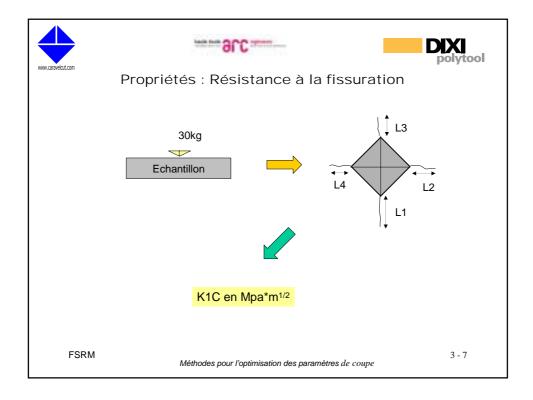
FSRM

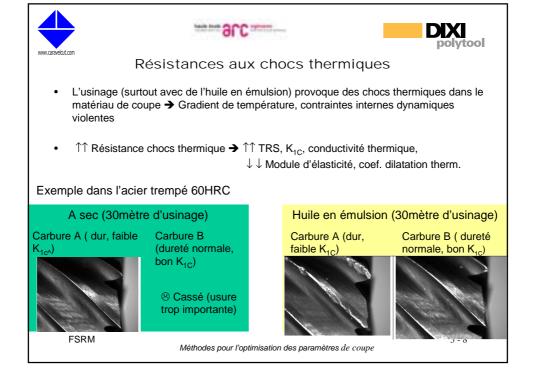
Méthodes pour l'optimisation des paramètres de coupe

3 - 3




Propriétés : Dureté


- Définition: Résistance d'un matériau contre la pénétration d'un matériau dur
- Se mesure en HV à l'aide du test Vickers (EN 23 878 -ISO 3878).
- > INDICATEUR de la résistance à l'usure


FSRM

Méthodes pour l'optimisation des paramètres de coupe

Résumé matière de coupe

Propriétés	HSS	HM Micrograin	HM ultrafin	Céramique	PCD ou PCBN
Dureté [HV30]	800- 1000	1400-1700	1700- 1900	1300-2100	>3500
TRS [Mpa] Resist. flexion	3000- 4000	2500-3500	4000- 4600	500-1100	500-1100
Résistance à la fissuration [Mpa * m ^{1/2}]	17-35	8-10	7-8	4-6	4-8
Température d'utilisation	500- 700	800	800	>1000	600 pour PCD >1000 pour PCBN
Résistance aux chocs thermiques	© 9	©	(2)	©© Pour Si₃N₄/SiAIO N ⊗ ⊗ Pour les autres	⊗⊗ pour PCBN ⊕ Pour PCD

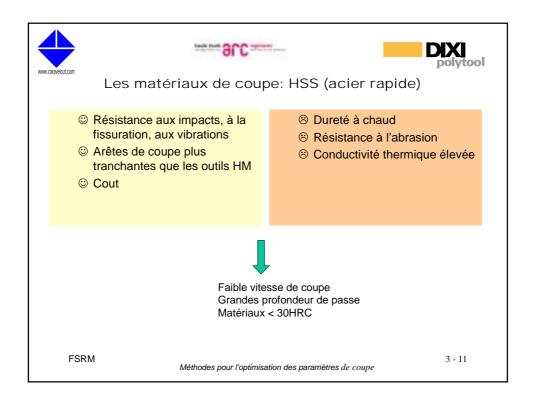
FSRM

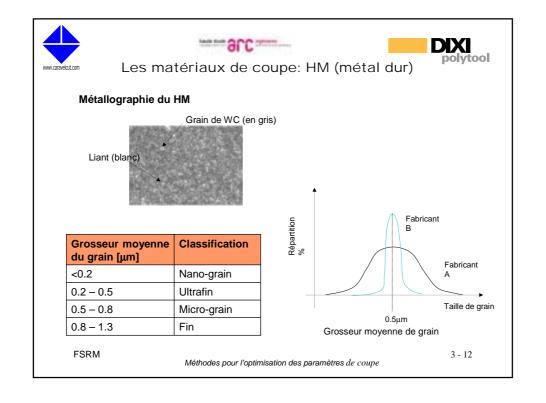
Méthodes pour l'optimisation des paramètres de coupe

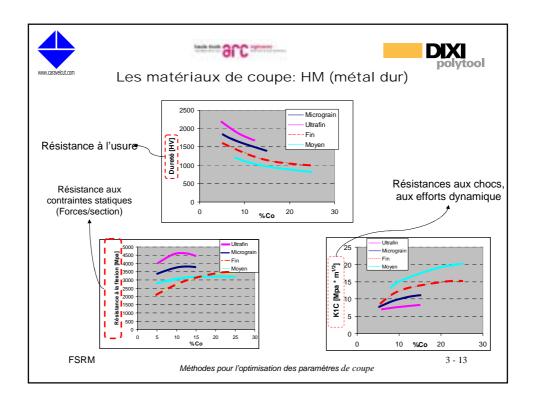
3 - 9

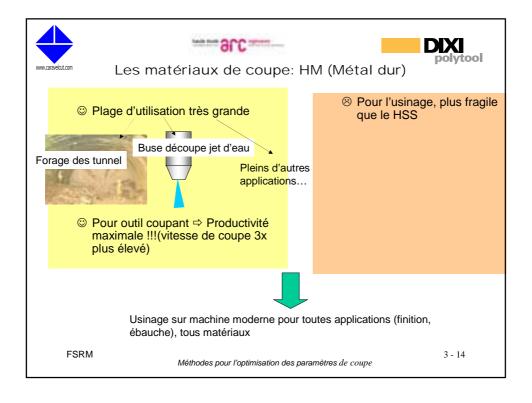
Les matériaux de coupe: HSS (acier rapide)

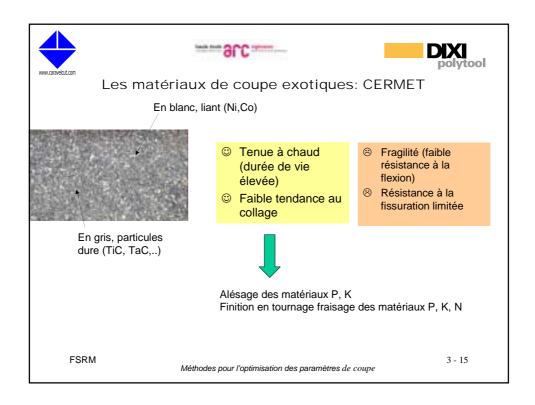
• HSS = ≈1%C, ≈6% W, ≈ 5%Mo, ≈ 4%Cr, ≈ 2% V

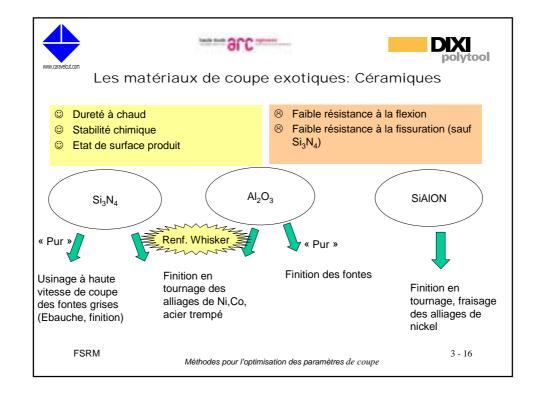

Influence par rapport à HSS standard	Cout	Résistance à l'usure	Résistance à chaud	Résistance à la flexion	Résistance à la fissuration
Métallurgie des poudres (HSS-PM)	$\uparrow \uparrow$	$\uparrow \uparrow$		$\uparrow\uparrow$	$\uparrow \uparrow$
Adjonction Cobalt			$\uparrow \uparrow$	↓ ↓	$\uparrow \uparrow$

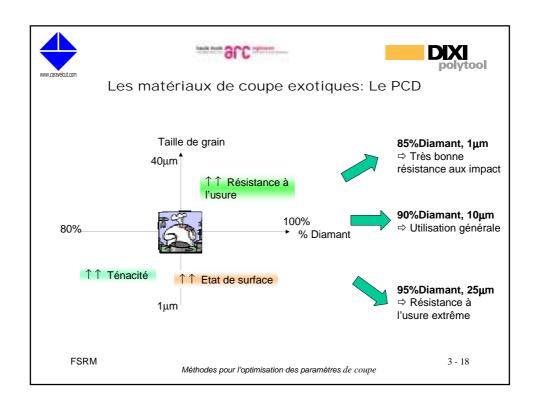

↑ ↑ Augmentation

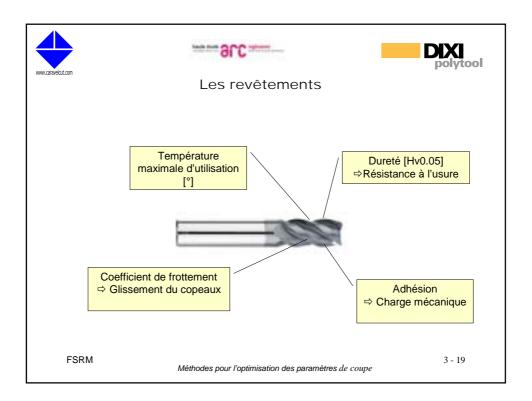

↓ ↓ Diminution


FSRM


Méthodes pour l'optimisation des paramètres de coupe







Les revêtements

- Quelques remarques que l'on rencontre souvent dans le monde de l'usinage
 - « Le revêtement ne convient pas pour les micro-outils, car ça arrondi les arêtes de coupe »
 - OUI et NON: En fraisage (gravage aussi), la durée de vie est largement améliorée. Il arrive même que certaines opération soit impossible sans revêtement (Résultats expérimentaux). En perçage, ceci dépend des fabricants. Plus le foret est petit, plus l'absence de « dropplet » est primordiale. Si le revêtement n'est pas suffisamment lisse,les copeaux peuvent coller dans la goujure (=> Casse). Il peut aussi y avoir des arrondissements des arêtes de coupe arrondie, mais il s'agit souvent d'un défaut de procédé.
 - « J'usine toute sortes de matériaux avec le même outil (fraises, forets). Un revêtement ça ne sert à rien ».
 - NON. Dans l'acier, la durée de vie est largement supérieure (souvent >>3x) au surcoût de l'outil (souvent 1.5x).

FSRM

Méthodes pour l'optimisation des paramètres de coupe

Les revêtements

- Quelques remarques que l'on rencontre souvent dans le monde de l'usinage
 - « Dans le titane, le revêtement ne sert à rien »
 - OUI mais: Dans la plupart des cas, l'augmentation de la durée de vie est nulle ou ne justifie pas le surcoût de l'outil. Il arrive que dans des conditions bien précises (Alliage de titane aéronautique, huile en émulsions) l'utilisation d'un revêtement se justifie
 - « Le revêtement n'améliore pas l'état de surface et ne sert qu'à améliorer la durée de vie».
 - OUI mais: Si le matériau à usiner est mou et que le revêtement a une dureté largement supérieure au substrat (>>2x), il y a de forte chance pour que l'état de surface soit supérieure comparé à un outil non revêtu.

FSRM

3 - 21

Méthodes pour l'optimisation des paramètres de coupe